Entropy Kinetics during Self-Organization Process in Open System

R.l.Zainetdinov (Dept. of Mechanical Design)

Key Words : Open System, Self-Organization, Synergetics, Information, Entropy Flow, Local Dissipative Zone,

Kinetics, Markovian Process, Bifurcation Point.

ABSTRACT: The process of self-organization in an open steady nonequilibrium system is considered. The behavior of a
local dissipative zone of system is investigated by using a model of a bistable element and the mathematical apparatus of
the Markovian stochastic process theory. Formulas, which describe kinetics of the entropy flow and its rate, are obtained
with respect to random process of influences exerted upon a system. It was revealed that the open system responds to a
sudden change of conditions by steep growth of the entropy flow up to a maximum value at the critical point (being the
stochastic analog of a bifurcation point). The model makes it possible to describe the whole life cycle for a system,
including passage across a sequence of the bifurcation points ("jumps" of development) and evolutionary stages of

development at each hierarchical level on a unified basis.

Nomenclature

D : Variance

ds : Variation of entropy

d.S : Entropy flow through a system (entropy exchange between system and environment)

d;S : Entropy production inside a system

dH/dt : Entropy flow rate

F(X), F(Y) : Probability distribution function for instantaneous values of random processes X(t) and Y(t) respectively
H : Information entropy

k : Bolzmann constant

LDZ : Local dissipative zone of an open system

Py(t), Py(t)  : Probability of down and up states of bistable element respectively

Py, Py : Final (independent of time) probability of down and up states of bistable element respectively
R : Universal gas constant

S : Thermodynamic entropy

t : Time

to : Initial moment of time

tp : Moment of time, corresponding to a bifurcation point

U, U* : Initial and subsequent sets of external and/or internal being conditions of a system
X : Determining parameter of a system

X : Mean (expected) value of the determining parameter X

X(t) : Random process of the determining parameter changing in the LDZ of a system
Y(t) : Random process of external influences exerted upon a system

Greek Symbols

o=v/u : Regime parameter

B=v-+u : Sum of transition rates between the two states

€, 6,8 : First, second, and third principal strains average over a LDZ respectively



€, O; : Intensity of strain and stress respectively

PD[Z] : Cumulative normal (Gaussian) distribution function of the random variable Z
H(t), V(1) : Transition rate from up state to down state and vice versa

0y, 0y, O3 : First, second, and third principal normal stresses average over a LDZ respectively
Om : Mean value of stress

ag : Yield strength

Subscripts

0 : Down state of bistable element

1 : Up state of bistable element

th : Threshold level

max : Maximum value

ST : Value, corresponding to steady (stable) state

Superscript

* : Value, corresponding to subsequent sets of external and/or internal being conditions of a system
1. Introduction

The study of the reasons, principles and mechanisms of the self-organization in an open system of
various natures (technical, biological, socio-economic, ecological, etc.) is a subject of the new
interdisciplinary scientific direction, named synergetics. The term "synergetics,” developed by H.Haken, -
emphasizes the importance of concerted action in the process of self-organization. Synergetics usually deals
with the open steady nonequilibrium active systems - dissipative systems. The spectrum of such systems is
quite broad.

Recall that a system may be open or closed (isolated), depending on whether or not it exchanges
matter and energy with its environment. G If this exchange of energy and matter is structured (or codified),
we can designate it as a transfer of information (entropy). In this broad sense, information exchange is not
necessarily limited to “intelligent” systems. © Presence of an energy flux from an external source to a system
and the dissipation of energy on external environment are the preconditions of activity in any system. Because
of this, the evolution of open active systems does not necessarily lead towards the equilibrium (the most
chaotic) state. On the contrary, open systems may be involved in processes of self-organization, which result
in more complicated and more advanced structures.

An open system that we are going to deal with is macroscopic. This means that the system (that is
macroscopic level) consists of a number of subsystems (mesoscopic level), that in turn consists of a number
of elements (microscopic level), which can be atoms and molecules in physics and chemistry, cells and
microorganisms in biology, groups of living organisms in sociology, etc.

As is known, @ for open systems the variation of the entropy dS for an interval of time dt can be
decomposed into a sum of two components

dS = dS +dsS )

These have quite different physical meanings. d.S is the entropy flow, which depends on the



processes of matter and energy exchange between system and environment. d;S is the entropy production,
caused by irreversible processes inside the system. According to the second law of thermodynamics, d;S can
only be positive or vanish in the absence of irreversible processes. Component d.S may be invariably zero,
positive, or negative in terms of the energy received (or given up) by the system. If conditions d.S<0 and
|d.S[>d;S are observed, the certain stages of temporal evolution in the open system can occur at general
downturn of entropy dS<0.

It is necessary to note that such a situation is possible only far from equilibrium, as in an equilibrium
state the member d;S always prevails. It means that a system is so far from its equilibrium that the linear laws
no longer apply; nonlinear terms become important. Self-organization is the "supercritical" phenomenon.
Nevertheless far from equilibrium, the system may still evolve to some steady state. In far from equilibrium
conditions, various types of self-organization processes may occur.

According to the traditional interpretation of entropy, as a measure of disordering (uncertainty) of a
system, it should be considered that, if the disorder decreases at the expense of entropy return (outflow) in the
course of evolution, the system evolves to more complicated and more advanced structures. ®*” Thus self-
organization, i.e., spontaneous formation of high-ordering structures is possible by virtue of an energy flux

which passes through the system.
2. Basic Ideas and Definitions

Let an open system be in a steady (stable) nonequilibrium state. Further, let us assume that in this
state the positive entropy production is compensated for a negative entropy flow
ds = .S @)
i.e., the system gives back so much entropy as is produced inside the system. The condition (2) establishes a
condition of current balance between the entropy flow through the system and its production inside the system
in a steady (stable) nonequilibrium state. Current balance is understood as stationary (not time-dependent)
nonequilibrium state of an open system, stable in relation to small deviations. The system in this state is
actually in dynamic balance with its environment. The processes of inflow and outflow in a system at current
balance are always balanced; however, as d;S>0, the power processes proceeding in the system are always
dissipative, i.e., are accompanied by dissipation of energy. The dissipation of energy is an essential main
attribute of current balance. One of main attributes of steady nonequilibrium systems is their ability to use a
surplus of free energy for fulfillment of the expedient functions, directed at maintaining an initial
nonequilibrium state of a system. As appear, the dissipative system is efficient (live) so long as it is capable of
releasing itself from the entropy which it produces during the dissipation of energy. An exchange with the
environment can be maintained by the system itself only when its internal state is far from equilibrium;

otherwise, the processes would die down. The entropy production inside system in certain sense character-

Fig. 1. Graph of transition in the bistable element modelling the LDZ behavior
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izes exhaustion of the system lifetime. Formulas, describing kinetics of the entropy flow and its rate, will be
deduced below. According to Eq. (2), these terms can be extended to the internal entropy production inside
the system in a steady (stable) nonequilibrium state. '*

All real processes are irreversible and unbalanced in some degree. Local gradients of temperature,
chemical potential, pressure (special case of which is the stress and strain concentration) can exist only in a
nonequilibrium system, and, if the system is closed, they relax in the course of time (evolution towards
equilibrium). Let X be an important local parameter, determining longevity, lifetime, load-carrying capacity
or any other property of vital significance for an open system in a local zone (hereafter we shall call X as
determining parameter). Further, let us label a zone of an increased gradient (or a local concentration) of the
determining parameter as the local dissipative zone (LDZ). Such a local zone limits the lifetime of a system.
As a rule, these zones correspond to places of the most probable failures during its lifetime. In the course of
intensive operating, the number of LDZ can grow. The growth dynamics of the LDZ number is an important
property of the behavior of dissipative system; however, in this paper this question is not considered. Here we
investigate the evolution of a system based on processes, occurring only in one LDZ.

At least two auto-regulating mechanisms of energy dissipation, corresponding to two hierarchical
levels (two stable states), can act inside a system. We shall consider the behavior of a LDZ by using the
model of a bistable element. Bistable element (Fig. 1) has two stable states (down and up), in each of which
it can exist for a rather long time. Let us denote the mean value of determining parameter of a system in the
down state as X, and in up state as X;. External influences or internal changes in a system can result in
transition of the bistable element from one state to another. To cause the transition, an intensity of influence
should exceed some threshold level. It was assumed that the transition from down state to up state is caused
by such an external influence exerted upon a system, at which determining parameter X (average over a
volume of LDZ) exceeds mean (expected) value of the threshold level Xy,

In each particular case, the physical content of determining parameter, its threshold level and
criterion of transition from one state to another are defined by the type and nature of the system examined and
depend on the statement of a problem. In part 6.1 we shall consider interpretation of this concept for elasto-

plastic deformation of metal in the local zone of a load-carrying structure.

3. Mathematical Formulation

For studying a behavior of the LDZ of an open system, mathematical apparatus of the theory of



Markovian stochastic processes was used. Recall that a random process with discrete states and continuous
time is referred to as a Markovian, if its state at a particular time depends on its state at the immediate
preceding time but not on any of its states at earlier times. ' In other words, a Markovian process is
characterized by absence of an after-effect. However, the Markovian property of random process does not
mean complete independence of the future from the past. In a general case in Markovian process, "the future
depends on the past only through the present." ¥

The differential Kolmogorov equations for the probabilities Py(t) and P,(t) of respectively the down

and up states of the bistable element were written in the following form

dR,(t) :

4t = MORO + uORO):; G)
dR(t)

gt = VORO - LORW) )

In the case of a homogeneous Markovian process where the transition rates do not depend on time
(that is v(t) =Vv; () =p), and under the condition that at the initial moment of time ty, the LDZ is in the down
state (that is Py(to)=1; P;(t5)=0), the solution of differential equations (3) and (4) is shown in the following

form ¥
R(t) = (1 +ae™®)/ (1 +a) 5)
P(t)y =all -e?)/ (1 +a) (6)

where a=v/|; B=v-+LL.

Hereafter we shall call o regime parameter since it defines the mode of the LDZ being,

The Markovian process is ergodic, because at t — 00 there are final probabilities of the down and up
states corresponding to the stationary stage. They are equal !

P =11m Po(t) =1/ +a); -
P,=lIm P(t) =a/(1+a).

to o

This means that after completing the transient process, at the stationary stage the LDZ of a system
will change its state transferring from down state to up state and vice versa, but their probabilities no longer
depend on time. They can be interpreted as the mean relative time of the LDZ stay in the individual states.
From Egs. (5) to (7) it follows that the process in the LDZ approaches the stationary stage exponentially.

Depending on the regime parameter o three characteristic “mode of being” ¥ the LDZ are
considered: light at a<1, v<y, P¢>P;, i.e., the LDZ is for a long period of time in the down state; symmetric at
a=1, v={, P¢=P=0.5; heavy at a>1, v>y, P;>P,, i.e., the LDZ is for a long period of time in the up state.

Let us show that the system evolving in accordance with differential equations (3) and (4) is

dissipative. "> For this purpose, let’s analyze a vector X = {P0 P1} and vectorial function 7~ (x7) = {r v}
with components V, and V, equal for system of differential equations (3), (4) to the following functions

Vo =-VE + UBV, =VE, — UR ®)

If a condition ¥



divV (X)<0 )
is satisfied, the system is dissipative. We obtained the result

__ _Lav. _ov, oV
. - J = 0 1
v (X)= jzo X, ox, Tox,

=—(v+u)<0 (10)

which confirms the fact that the researched system is dissipative.
4. General Results

The behavior of the statistical properties of the examined bistable element in the course of evolution
is in detail analyzed in the articles. '®'® Let us list only some principal properties.

Time dependence of mean (expected) value X (7) of the determining parameter was calculated

under the obtained formula

)?(z)=[X0+aX1—a(X1—Xo)e‘B‘J/(Ha) (1D
At transient stage, it has the tendency to grow or decrease depending on the initial conditions, as

shown in Fig. 2 by solid line. Curve 1 occurs when the initial state is the down one and curve 2 -- when the

initial state is the up. The dashed line corresponds to the steady level of the mean value of determining

parameter X, s7 - One can observe that both lines 1 and 2 approached the steady level at stationary stage.

The steady level is independent of initial conditions and obtained in the form

Xe = (% +ax)/ @ +a) (12)
The second of the principal statistical properties we studied is variance of the determining parameter

X. The time course of a variance Dx(t) was described by term
D, (=%, - X, Y[R -2 ) 13
The graph of time courses of the variance Dy(t) for heavy and light modes of the system being is
shown in Fig. 3. Since in the initial moment of time Py(tg)=1, we have Dx(to)=0. At the stationary stage (at
t— ) we have
2 a
Dy = (X = X,) L+al

Let us consider the critical point of the variance function (13). First and second derivative tests for

(14)

critical point of this function can be written in the form
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Fig. 2. The time courses of the mean value Rt ) of determining parameter (solid lines)

from down (1) and up (2) initial states. Steady level XST is denoted by a dashed line.

dD(t) _ o d’Dyt)
dt ©oodt?
Eq. (15) is satisfied for heavy mode of being at o>1 in a critical point, corresponding to a moment

I FF-1H (16)

v+u 020 O

<0 (15)

In this critical point variance function (13) has a maximum, equal to

Do = o+ (%4 = %) (17)

This critical point corresponds to a stochastic analog of a bifurcation point of a system. ®

The light mode of the LDZ being when a<1 (See line 2 in Fig. 3) is characterized by absence of the
critical point and by stabilization of the variance on the level Dgr in the course of evolution towards a
stationary stable state.

Let us assume that the random process Y(t) of dynamic influences with probability distribution
function F(Y), is exerted upon a system. This process produces a similar random process X(t) of changing the
determining parameter X in the LDZ. Further, let us assume the probability distribution function for
instantaneous values of the random process is F(X). A dependence of regime parameter a, which defines the

mode of the LDZ being, on the statistical properties of this process is obtained in the following form
F(X,)=PF =1/(1+a) 1-F(X,)=PF=a/1+a) (18)

In example (See, part 6.1) we shall obtain functions connecting regime parameter 0 and statistical
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Fig. 3. The time courses of the variance Dx(t) for heavy (1) and light (2) modes of being (solid lines). Steady

level Dgr is denoted by a dashed line. The coordinates of the critical point are labeled as Dy,x and t;.

properties (mean value and variance) of normal (Gaussian) random process exerted upon a system.

One of the most important variables of any system is entropy. The main point of interest of the
foregoing analysis is the possibility of computing and forecasting the time course of entropy. Note that
various interpretations of entropy are internally linked quite closely.  The physical entropy of a system

coincides with the thermodynamic entropy S. The information entropy H is connected to them by a ratio 7

S=kln2xH (19)
The Eq. (19) can be rewritten per unit of amount of a substance (1 mole) in the form
S=RIn2xH (20)

The information entropy, being the measure of uncertainty, a8

equal to the amount of information
according to Shannon, required for removing this uncertainty, will be examined.
For the bistable element modelling the LDZ, the information entropy function H is determined from

the equation '*

1
H:_zpj(t)logzpj(t) 21)
=0

The minimum value of entropy H=0 corresponds to the degeneration of a stochastic system into a
rigid determinate system. The maximum H,,=1 in a closed system corresponds to its transition in an
equilibrium state, that equivalently of its wreck. For open self-organizing systems, this value corresponds to a
moment of bifurcation, when there is the destruction of pattern (microstructure) exhausting its dissipative
abilities, and resulting in an emergence of new pattern at other hierarchical levels.

Taking into account decomposition of entropy into a sum of two components in Eq. (1) and
condition (2) of current balance, we shall consider kinetics of entropy flow in the LDZ of a system.

Egs. (21), (5) and (6) were used to obtain the analytical dependence of the entropy flow on time.

After some algebra we obtained following formula
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01 _a\J B} Oa .
Trainze o MErg Grae)gr@-e)ing - (re ”)% (22)

The time courses of the entropy flow H(t) is shown in Fig. 4. Analysis of function (22) shows that in

Ht) = -

heavy mode of the LDZ being (at a>1) at the time t;, determining by term

t = - ! Inﬁx_% 23
=0 i o 23)

the maximum entropy flow is reached, H(t,)=1. It can be shown that this moment corresponds to the condition

of equal probabilities (maximum uncertainty) of keeping the LDZ in the down and up states
R(t,) = Rt,) =05 (24)
Note that the moment of time t,, determined by Egs. (23), (24) corresponds to the critical point of
maximum variation Dy, determined by formula (16). That means in the case of instability, some fluctuations
get amplified up to a macroscopic scale during macroscopic times. In this way, fluctuations -- environmental
perturbations or eigenfluctuations -- may drive the system into a completely new state and thus become the
driving force of system development (“order through fluctuation”). Instabilities at the same time can break
symmetry, that is, bifurcations occur: the system may choose among two states, though determined by
causality. The “selection” of the future path of development is unpredictable now. '” However, at least we
can predict the moment of maximum uncertainty and endeavor to take precautions against an unfavorable
path of development.
After passing the system through the critical point which is a stochastic analog of the bifurcation

point, ® the entropy flow decreases and, leaving the transient stage, stabilizes on the steady (stable) level

H(t)
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Fig. 4. The time courses of the entropy flow H(t) for heavy (1) and light (2) modes of being (solid lines).

Steady level Hy, is denoted by a dashed line. The coordinates of the critical point are labeled as Hy,x and t;,
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H :In§1+a)/aa+1alln2 (25)

According to the traditional interpretation of entropy, it means that because of entropy outflow in the
course of evolution, the disordering decreases. A system is structuring in response to the heavy being mode
by self-organization of more complicated and more advanced structures (patterns). This is an attribute of the
system’s adaptation to the random process characterized by the regime parameter o>1.

The light being mode of the LDZ when o<1 (See Figure 4) is characterized by absence of the
stochastic analog of the bifurcation point and by stabilization of the entropy flow on the level Hgr during the
period of exit from the transient to stationary stage.

From positions of the synergetics, special interest is attracted by kinetics of the entropy flow rate in
the course of the system’s evolution. The entropy flow rate is defined as the derivation of the entropy flow

function (22). It was obtained !*'¢2%

B —e PO
o= v 1ng”’(1 e_B,)D (26)
dt In2 [QOl+ae”™ O

as a Zainetdinov formula in the following form

Plot of the entropy flow rate with time is shown in Fig. 5. Analyzing the function (26) allows us to
conclude that the response of a system to the heavy being mode (0>1) by a rapid increase of the entropy flow
takes place simultaneously with reduction of the entropy flow rate to zero at the moment of time t;, (see Fig.
5). Hereafter the rate of entropy flow becomes negative, passes through a minimum, and aspires to zero,
when the transient process approaches the steady (stable) stage. It corresponds to the I.Prigogine @

theorem of minimum entropy production during the stationary process in system.

dt

I —
| —

t Time t

Fig. 5. The time courses of the entropy flow rate dH/dt for heavy (1) and light (2) modes of being



5. Influence of the variation of conditions

Consider now behavior of the LDZ with the variation dU of external and/or internal conditions of a
system. The main point of interest of the foregoing analysis is the possibility of computing and forecasting a
system response (namely the time course of entropy) to a change of the being conditions. Denote an initial set
of conditions by U, a subsequent set by U*=U+0U, and new values of the quantities, corresponding to set of
conditions U* letters with an asterisk as well. The change of conditions may lead to both the modification of
the regime parameter 0* and the probabilities of states Po* and P,*. For fulfillment of the analysis we used a
system of differential Kolmogorov equations, similar to Equations (3) and (4). Timing of time t* started again
at the moment of variation of the conditions U*. The initial conditions were formulated by using the final

probabilities (4) in the following manner

* * u 1
Rlte =0 =R = T 1+q 27)
* * V a
Pl(to = O) = F)1 = = (28)

vV + U l1+a
Solution of the Kolmogorov differential equations for the probabilities Py*(t*) and P *(t*) of
respectively the down and up states of the bistable element of the LDZ under new conditions U* with respect

to initial conditions (27), (28) were obtained in the following form

Pt = 1, Oa  a O »

0 “1+a H+a 1+af @
a O o a O ..

* * — + _ -B't

P(t) T+a "BEva 1+aE (30)

where B*=v*+p*.
In the asymptotic limit, as t— oo, the final probabilities of the down and up states corresponding to

the stationary stage under new conditions U* were obtained as follows

. /J* 1 . V* a*
PO = * * = * and Pl = * * = * (31)
v + U 1+a v + U 1+a

One can note that these final probabilities do not depend on initial conditions (27) and (28).

From the positions of synergetics, an important role is played by analysis of the functions of entropy
flow H*(t*) and its rate dH*/dt* as a response of an open system to a sudden change of the external and/or
internal conditions. Using equations (21), (29) and (30), mathematical expression for the time course of the

entropy flow H*(t*) under new conditions U* was obtained in following form



1
In21 +a)l +a°

" = llasa s -aker] -

L+a)+(a -a)”
1+a)l+a’)
a@l+a)+(a -a)e? B

1+a)t +a) H

x1n + [a*(l +a) +(a —a*)e““”] x (32)

xl n

A function of the entropy flow rate after a variation of conditions of the system existence was

received in the following form

Oy B + (v - v pe?t O

dH(t") vy - v

P
. e | n3— - - —0 (33)
dt Bln2 B+ (Vi -w)e? D
The initial rate of the entropy flow is equal to
dH(t” vt = v
aHQt)l W ZVH (34)
dt . Bln2

t" =0

It is evident that the obtained functions (32) to (34) depend on the combination of the previous U
and new U* being conditions.

Fig. 6 shows the graphs of the functions of entropy flow H*(t*) and its rate dH*/dt* for the case
when being conditions become more heavy (0<l1, a*>1). On the first time interval (0<t<1.4 s) when a<I, the
LDZ exists in an easy being mode, so the entropy flow is stabilized at a level Hgr, corresponding to this
mode. At the time t=1.4 s being conditions become heavier (a*>1). An open system responds to a sudden
change of the external and/or internal conditions by a rapid increase of the entropy flow from the stationary
level Hgr, obtained under previous being conditions, to the maximum value H*(t,*)=1. At the time t,*, the
rate of entropy flow sharply falls up to zero.

The mathematical expression for moment of time t,* was obtained in the following form

v 1 In(a* - 1)@ +1) s
T T e —a (35)

One can note, that it depends on a combination of the previous and new being conditions U, U*.

In a time t,* after transition in a heavier being mode (0*>1) the LDZ passes across a bifurcation
point. This point is associated with destruction of the pattern (dissipative structure) of the first hierarchical
level, exhausting its dissipative possibilities, and emergence of new appropriate pattern, corresponding to the
changed being conditions. Leaving on the second level of hierarchy after the jump of development, the LDZ
enters an evolutionary stage of development. There is the rather slow stabilization of the entropy flow during
this stage at the expense of saturation by the information up to a level I=1-Hgr™*, which corresponds to a new
mode of system existence. In other words, the LDZ adapts to new being conditions by perfection of structure
(that is self-organization). In this case, the entropy flow rate (See, Fig. 6, b) gets negative value, passes

through a minimum and, remaining negative, aspires to zero, when the transient process
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Fig. 6. Response of a system to a change of the being conditions.
The time courses of the entropy flow H(t) (a) and its rate dH/dt (b) for the case when mode of being

becomes heavier (0<1, a*>1). The coordinates of the critical point are labeled as H* ., and t*,.

reaches the stationary stage with a new steady level of the entropy flow Hgr*, adequate to conditions U*. It
corresponds to the Prigogine  theorem of the minimum entropy production during a stationary process in a
system.

In passage through the critical point at time t,* the variance D*x of the systems determining

parameter X is maximum. The system is characterized at this stage by the highest degree of disordering, with



the random fluctuations manifested on the macroscopic level. After passage through the critical point, the
variance Dy is stabilized on a new stationary level corresponding to the being conditions U*.

Unfortunately, there is no place for more detailed examination of behavior in the course of time of
the statistic properties of the systems determining parameter X after changing the being conditions. The
mathematical terms, describing the time courses of these statistic properties (such as mean value X (t ") and
variance D (t ")) may be found in articles. (101 T ot ys note only, that there are possible both the cases of
monotonous increase or decrease of the variance D*y and the cases of emerging the characteristic peak on a
curve of variance D*y. The characteristic peak is similar to that shown in Fig. 3 and corresponds to a critical
(bifurcation) point. Passing through such a characteristic peak and stabilizing the variance D*yx on a new
steady level D*gr confirm completion of the period of running in ("burn-in") of a system and its adaptation to
new changed conditions. When testing the system, it is possible to measure and record the time history of the
mean value and variance of determining parameter in the vicinity of some LDZs. Analysis of processes,
occurring in the LDZ, on a basis of considered criterion makes it possible to speed up the time of reception
data about adaptation of system to new changed conditions.

An open system of any nature comes back in a steady stable state due to inflow of the information
from the outside and redistribution of the information entropy between hierarchical levels of the system. "

After passage through the bifurcation point, the entropy flow decreases in accordance with an
information accumulation; that means appropriate increase of an organization level during a system
development. At each hierarchical level of a system’s evolution at the end of self-organization process, when
the "architecture”" of the system was basically defined and becomes saturated by the information, the entropy
curve is gradually straightened, displaying the transition of a system to the evolutionary stage of development.
A growth of the organization degree for any system has limit, area of saturation, determined by limited
opportunities of an information accumulation in given structure at a given hierarchical level.

Such a picture of temporal evolution of an open system with respect to variation of the being
conditions agrees with the synergetic qualitative approach to processes of self-organization in nonequilibrium
dissipative systems. "**? Obtained analytical dependencies reveal quantitative ratio, reflecting kinetics of the
entropy flow and its rate, which shows evolution of open systems in the course of its life cycle under complex
variation of being conditions. Revealed laws, in our opinion, are applicable for open nonequilibrium systems
of various natures: technical, economic, biological, ecological, social, etc. The discussed model and obtained
dependencies make it possible on a unified basis to describe the whole life cycle of a system, including
passage across a sequence of bifurcation points ("jumps" of development) and evolutionary stages of
development at each hierarchical level. Transition to a new level of development goes from disorder to order,
through the phenomenon of instability in the bifurcation points, where a system has a number of options to
diverge in several directions.

In the following, we shall give a few examples in order to elucidate the received results.

6. Examples



6.1. Elasto-plastic deformation of metal in local zone of structure

Let us consider the self-organization process during elasto-plastic deformation of metal in local
zones of load-carrying structures. '**2” From the thermodynamical and synergetic point of view, a material
undergoing plastic deformation is an open system brought far from equilibrium conditions. @829 In this case,
the LDZ is represented by the zone of stress (strain) concentration, and the dissipative system is the load-
carrying structure as a whole. Let us accept as determining parameter X, limiting the lifetime of the structure,

stress intensity

o =|J2(0,-0,) +(0, -0} +(0, -0} 36)
or strain intensity
€ :(\/5/3)\/(81 _82)2 + (€, _83)2 + (&, _51)2 (37)

determined from the distortion energy (Huber - Von Mises - Hencky) theory. ®” It was assumed, that

transition from down state, corresponding to elastic behavior of metal in the LDZ, in up (the plastic yielding
state) is caused by such an external influence exerted upon system under which determining parameter
exceeds a threshold level, equal to the expected value of the yield strength Og or the strain of the yield
strength &g
0;=20g Or §=¢&g (38)

In the three-dimensional coordinate system 0y, O, and O3, the plasticity surface, corresponding to the
Huber - Von Mises - Hencky condition, ®” represents a circular cylinder with the same angle y in relation to
the individual axes, as is shown in Fig. 7. If the trajectory of the determining parameter 0;(t) is situated inside
this cylinder, then the LDZ is in down state, and if it is on the plasticity surface, then the LDZ transfers to up
state.

The main point of interest of this example is to show how the random loading process exerted upon
the load-carrying structure is linked with the structure response (namely the time course of entropy) to a
change of the loading conditions. Let us accept the hypothesis that instantaneous values of the loading process
have a normal (Gaussian) distribution with the following statistical properties: mean value 0,,, and variance Dy
of the stresses. Using Egs. (18), the relations that link the regime parameter o with these statistical properties
and also with the threshold level (mean value of yield stress Os) were obtained in form

0, - g, 07

a = = D -1 at 0,,<0g (39)
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Fig. 7. Graphical representation of the transition criterion

between the elastic and plastic states of metal in the LDZ

1 1 U-x20 o, - O
h Z) = — | ex X, Z = —= 41
wereCD() \/ﬁf[o DEIZ—% D, (41)

The dependence of a on O, and Dy at the threshold level 0s=310 MPa for low-carbon steel is
computed from Egs. (39) to (41) and plotted in Fig. 8. We used this approach for a load-carrying welded
structure, namely the pivoting section of a gondola car body. Examination of the time history of stress
change in elements of the gondola car, including directly the welded joints, carried out using the automated
system for amplitude-spectral analysis, shows that the probability distribution of the instantaneous values of
the random process is normal.

It may be seen that the loading regime of the LDZ of the load-carrying structure is affected mostly by
On. At 0,<0g, the light regime (0<1) is established; at 0,,>0s, the heavy regime (0>1) is established. The
variance Dy of the process, regardless of its value, cannot have any strong effect on the being regime.

In the course of elasto-plastic deformation in metals, a number of dislocation patterns
(microstructures) are formed. ©" One after the other ball, cellular, persistent slip band, quasi-amorphous
microstructures arise and are destroyed, consistently replacing each other on a background of existing grains'
boundaries. Further increase of load results in formation of the crack origins in a quasi-amorphous zone and
growth of their density. The spontaneous emergence of a quasi-amorphous microstructure corresponds to
achievement of a maximum disorder in this local zone, at which point the thermodynamic entropy is
maximum and equal to enthalpy of melting. All these transitions are supervised by achievement of a
maximum level of the entropy flow Spax. ©” Under action of an energy flux, pumped up by the stochastic
loading process in the LDZ, the deformation ability of metal at the lowest hierarchical structural level is
exhausted. Getting through a critical point of bifurcation, metal passes to a higher level of the pattern

hierarchy to microstructure, having the higher dissipative characteristics. Gh
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Fig. 8. Change of the regime parameter O as function of the statistical properties (mean value 0, (a) and
variance Dg (b)) of Gaussian random process of dynamic stresses: 1 -- 5) Dy is equal to 50, 100, 150, 200,
300 MPa? respectively; 6 -- 12) gy, is equal to 100, 200, 300, 350, 400, 450, 500 MPa respectively.

Line a=1, corresponding to threshold level 0,,=0s=310 MPa is denoted by dashed line.

This transition between patterns on the microscopic level is reflected by the curves of the entropy
flow and its rate, obtained before. Returning to Fig.6, note that at the first time stage (0<t<1.4s) the regime

parameter 0 was determined (by using plots of Fig. 8) to be equal to 0.25. It corresponds to the vertical



(gross) dynamic load of the gondola car. The value a*=5 corresponds to the total effect of the vertical and
longitudinal inertial (in collision of cars) loads. That mode of the LDZ being matches to the transition of
metal in plastic state. In Fig. 6, one can see that a load-carrying structure responds to the heavy conditions by
a rapid increase of the entropy flow from the stationary level Hgr, obtained under vertical load, to the
maximum H* . at the time t,*. This critical point corresponds to the destruction of pattern exhausting its
dissipative abilities, and the emergence of new microstructure at another hierarchical level. The system is

structuring responding to the heavy being mode by self-organization of more advanced patterns.

6.2. Nicolis & Prigogine’s Model

In the book, ® is considered a process of transition between multiple stationary states caused by
formation of embryo in the model system. The plots, showing the time courses of the mean value and variance
of fluctuations for this model, are indicated in Fig. 9, which was adopted from. ® They correspond to
analytical dependencies, Egs. (11), (13) of mean value )T(t ) and variance Dx(t) of determining parameter X
with time (See Fig. 2 and 3).

Unfortunately, there was no more place and time for elaborating many special examples and

applications. We hope that they will be presented soon in some original publications.
CONCLUSIONS

1. The process of self-organization in an open steady nonequilibrium system is examined. The
behavior of a local dissipative zone of system is investigated by using a model of a bistable element and
mathematical apparatus of the Markovian stochastic process theory. Formulas, which describe kinetics of
the entropy flow and its rate, are obtained with respect to stochastic process of random influences exerted
upon a system.

It was revealed that the various kinds of open systems (technical, biological, socio-economic,
ecological, etc.) respond to a sudden strong change of external or/and internal being conditions by the same
way: by steep growth of the entropy flow up to a maximum value at the critical point. According to the
traditional interpretation of entropy, it means that the disordering and chaos in the system increase at this
stage of its evolution. The critical point (being the stochastic analog of a bifurcation point) associates with the
self-organization process, that is the destruction of pattern (dissipative structure) of the previous hierarchical
level, exhausting its possibilities, and resulting in the emergence of new more complicated and more
advanced structures (patterns), corresponding to the changed being conditions. In other words, the system can
adapt to new being conditions by perfection of its structure.

The model makes it possible to describe the whole life cycle for the system, including passage across
a sequence of the bifurcation points ("jumps" of development) and evolutionary stages of development at

each hierarchical level on a unified basis.
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Fig. 9. Evolution of the mean value X (a) and variance Dy (b) of fluctuations

for the Nicolis-Prigogine’s model. Adapted from @,

Open system of any nature comes back in a steady stable state due to inflow of the information from
the outside or/and redistribution of the information entropy between the hierarchical levels of system.

2. Obtained mathematical expressions for the time course of the entropy flow make it possible to
predict the moment of the critical point (bifurcation point) coming. That is the moment of maximum
uncertainty, instability, and chaos in the system when small fluctuations (environmental perturbations or
eigenfluctuations) become amplified up to a macroscopic scale. It may drive the open system into a
completely new state and thus become the driving force of system development. At the present time we
cannot forecast the “selection” of the future path of development. However, at least we can predict the

moment of maximum uncertainty and endeavor to take precautions against unfavorable path of development.
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