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ABSTRACT : We introduce a new field of the multifractal applications in the reliability engineering and risk analysis.
The multifractal theory is a good basis for analyzing the statistical data on reliability and safety, and provides
probabilistic evidence of a multiplicative process hidden in the temporal complexity of failure sequence. We apply the
wavelet transformation to a series of statistical data on reliability obtained from experiments and inspections of
technical state under real service conditions. For the approbation of the technique, a computer simulation study of
binomial multiplicative cascade has been done. Using the WaveLlab software carried out the wavelet analysis of the
process. It provides visual evidence of the multifractal nature of the flow of failures and reveals the hierarchy that

governs the relative positioning of the failures in the course of time.

Nomenclature
a . Dilation parameter of wavelet transformation
b : Translation parameter of wavelet transformation
Ca - Binomial coefficients
F(N) : Cumulative distribution function for the lifetime N
F(x) - Cumulative distribution function for the interval [0, x]
fir, m, p) : Probability density function for the binomial distribution P
M(N) : Probabilistic measure at lifetime N
m : Total number of repeated independent Bernoulli trials
No - Size of sample
N - Lifetime of specimen in cycles of loading
n - Number of generations in the binary subdivision of the unit time interval T
P - Probability of failure, or a fraction of the sample size in the left subinterval of the interval T
q - Nonfailure probability, or a fraction of the sample size in the right subinterval of the interval T
r : Total number of failures
T . Unit time interval [0, 1]
t(j) : Normalized failure time of j-th member of sample
t : Time
Wix(t)} : Wavelet transformation of a signal x(1)
X : Subinterval of the unit time interval T
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Greek Symbols

o : Shape parameter of the Weibull distribution

At - Duration of the temporal subinterval, or resolution
I3 - Scale parameter of the Weibull distribution

L) : Failure rate

n - Probabilistic measure

Hx) - Probabilistic measure of the temporal subinterval, located at x for the multiplicative process
() - Failure time of j-th member of sample

Wi(t) : Mother wavelet

Subscripts

max - Maximum value

1. Introduction

The purpose of the paper is to introduce a new field of the multifractal applications in the
reliability engineering and risk analysis. In particular, we do not know whether some temporal structure is
hidden in an apparently disordered failure process realization. The multifractal theory is a good basis for
describing the failure sequence in time and can provide a deeper understanding of the nature of failure flow,

In reliability engineering for instance, the Weibull distribution is one of the most widely used
distributions because through the appropriate choice of parameters a variety of failure rate behaviors can be
modeled. The two-parameter Weibull distribution assumes that the failure rate A.(1) is in the form of a power

law
-1
A(t) =aA“t" M
for all t=0. where o and % are positive and are referred to as the shape and scale parameters of the
,
distribution respectively. Such power laws, with integer or fractional exponents, are in fact endless source of

self-similarity or more precisely, self-affinity. 21 These functions can be qualified as self-affine functions

since their graphs are similar to themselves when transformed by anisotropic dilations.
2. Mathematical Model of Stochastic Point Process

We refer to the flow of failures as a succession of the random failure events occurring in a system
during its lifetime. A mathematical construction that represcnts the flow of failures as a sct of the random
points on the time scale is referred to as a stochastic point process. ) The point process can either be
modeled as a list of impulses located at times where cvents occur (F ig. 1, b) or as a count process (Fig. 1, a),
similar in a sense to the "devil staircase” fractal. “®" Such a process may be called fractal when a number of

the relevant statistics of the point process exhibits scaling with related scaling exponents, indicating that the
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Fig.1 Two representations of a stochastic point process:
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count process modeling the flow of failures (a) and sequence of idealized impulses,

occurring at normalized failure times t(j) € T = [0, 1] (b)
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represented phenomenon contains clusters of points over a relatively large set of time scales. This scaling
leads naturally to power-law behavior. @’

The process realization for a sample of size Ny is represented by a sequence of idealized impulses
of vanishing width, located at specified moments of the failure time =(j) (j = 1...., r). Normalizing the failure

time 1(j) of every j-th member of sample on the maximum value Ty
. (2)

we can consider the failure distribution on the unit temporal interval T = [0, 1].
3. Wavelet Transformation

Wavelet transformations play a central role in the study of self-similar and self-affine signals and
systems. "'” In terms of history, the theory of wavelet transformations dates back to the work of

(11}

Grossmann and Morlet """’ | and was motivated by applications in seismic data analysis.

Most generally, the wavelet transformation W{x(t)} of a signal x(t) 0o

an

W)= X =[xy, () dr,
S (3)

is defined in terms of projections of x(t) onto a family of functions of the form
“1/2 t—b
v o (1)=la| w[ . ]
, C))

normalized by la| ™2 This family of functions formed by the dilations, which are controlled by the positive

real number aeR+, and translations which are controlled by the real number beR, of a single function w(t)
named the mother wavelet. Visually, the mother wavelet appears as a local oscillation, or soliton-like wave, !
in which most of the energy of the oscillation is located in a narrow region in the physical space. The
dilation parameter a controls the frequency of wa,(t). The translation parameter b simply moves the wavelet
throughout the domain.

(8,1

The wavelet transform can be regarded as a mathematical microscope, 2 for which position and

magnification correspond to b and a”, respectively, and the performance of the optics is determined by the
choice of the analyzing wavelet w(t). Wavelet analysis is a powerful tool for locating singularities, ® '?
because a singularity of a signal x(#) at t(j) produces a cone-like structure in the wavelet transform W{x(1)},
pointing towards the point a=0, b=t(j). As it was emphasized by Arneodo et al. 020 the wavelet transform
assists visualization of self-similar or self-affine properties of multifractal objects. In particular, it illustrates
the complexity of the multifractal under consideration, revealing the hicrarchy that governs the relative
positioning of the singularities of a signal x(¢). In the point stochastic process these singularities model the

relative positioning of the failures in the course of time.
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4. Computer Simulation Study

For the approbation of the technique, a computer simulation study has been done. As a first step,
we have carried out a statistical multiscale analysis of m repeated independent Bernoulli trials for a sample
of items of identical design and technology. In this case a binomial discrete distribution models random
variable of the number r of failures in m independent Bernoulli trials, each with the probability of failure p

(or nonfailure probability q). Probability density function f(r, m, p) for the binomial distribution is w
f(romp)y=C. p"(1=p)" ", r=0,12,....m, 5)

where C,, are the binomial coefTicients.

Since the work of Billingsley "'

. it has been known that the binomial distribution provides an
example of a probability that has a rich asymptotic structure and is, in modern terms, multifractal. Rt Y
fact, the binomial multifractal measure is a product of the multiplicative process (or multiplicative cascade).
which attributes probabilitics according to Eq. (5). to the dyadic temporal subintervals of the unit interval of
time.

Distributions generated by a multiplicative process have many applications in the reliability
engineering. We have considered the binomial multiplicative process, which generates a probabilistic
measure on the unit temporal interval T = [0, 1]. First divide this interval T into two subintervals of equal
duration At=1/2=2". The left half is given a fraction p of the sample size and therefore the left subinterval
has measure 1, = p. The right-hand subinterval of time is given the remaining fraction of sample and has
the probabilistic measure i, = 1 -p=q.

In the second generation (n=2) we increase the resolution to At=1/4=2""_ The multiplicative process
divides the population of the sample in each temporal subinterval in the same way. There are four possible
outcomes, cach with an associated probability, which forms the probabilistic measure F
M, =, F = s s s )= o pa ap, 94 ©

In the next generation (n=3) we divide each temporal subinterval into two new subintervals. A
subinterval of time with the content p; is separated into a left-hand subinterval with measure p; = pipo and a
right-hand subinterval of time with measure p;.; = pp,. The whole interval of time [0, 1] is now divided
into temporal subintervals of duration At=1/8=2", and the set Mj in the third generation is therefore given
by the list of probabilistic measures

231
M= {P J }:-__0 = {PPP; prq, pap; P44, 9pPp; 4P9. qqp;qqq} )

This binomial multiplicative process produces shorter and shorter temporal subintervals At that
contain less and less fractions of the total measure. Figure 2,a shows the plot of the probability mass
function, that is measure p(x) of subinterval, located at x for the binomial multiplicative process with
p=0.25 and q=1-p=0.75 after n=12 generations of the multiplicative process (cascade). Figure 2,b shows the

plot of the cumulative distribution function F(x), that is the measure for the interval [0, x], as a function of x
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Fig. 2 The probability mass function p(x) (a) and the cumulative distribution function F(x) (b)
for the binomial multiplicative process with p=0.25
F(x)=2 4, (8)
i=0

for the binomial multiplicative process with the same parameters.

The cumulative distribution function for the binomial multiplicative process has an evident feature,
that is the self-affinity of the function F(x), describing with the following relations
F(x)= pF(2x), for 0<x<1/2;

F(x)=p+(-pFQ2x-1), forl/2<x=Ll 9)
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So. the measure F(x) for the interval [0. x] is scaling in the sense that the left half and the nght
half of Fig. 2.b are obtained from the whole when transformed by anisotropic dilations.

The wavelet analysis of the multifractal measure generated by a binomial multiplicative process
with parameters p=0.25 and q = 1 -- p = 0.75 was carried out by using the WaveLab package. "'~ A
"Sombrero" wavelet was used because it provided a marginally better visualization. The graph of the local
maxima for the continuous wavelet transform of the multifractal measure generated by a binomial
multiplicative process is shown in Fig. 3. It shows that the successive forkings produce a multifractal
temporal structure on the unit interval.

Bernoulli trials produce the probabilistic process of failure occurrence, which results in the
formation of self-similar, or rather self-affine temporal clusters. Overwhelming evidence from computer
simulations indicates that these patterns are near self-affine [ractals, meaning that their complication is
about the same at all scales of observation. Using this classical example of repeated Bernoulli trials we have
proved the technique and software. The example of computer simulation study was in detail analyzed in the

articles. %17

log2(1/a)

Fig. 3 The continuous wavelet transform of the multifractal measure

generated by a binomial multiplicative process with p = 0.25
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5. Wavelet Analysis of Statistical Data

A natural way of performing a multifractal analysis of fractal measures consists in generalizing the
"classical” multifractal formalism using wavelets instead of boxes. !

Wavelet analysis is already known to be a powerful tool for analyzing multifractal attractors. We
have applied the continuous wavelet transformation to a series of statistical data on reliability obtained from
experiments and inspections of technical state under real service conditions, Wavelet analysis provides a
two-dimensional unfolding of the one-dimensional realization, resolving both the time and the scale as
independent variables. The wavelet transformation assists visualization of sclf-similar or self-affine
properties of multifractal objects. In particular, it illustrates the complexity of the multifractal under
consideration, revealing the hierarchy that governs the relative positioning of the failures in the course of
time, The multifractal structures proposed in the flow of failures are real-time structures, in contrast to
fractal attractors, which reside in phase space. Thus the wavelet transformation can be applied directly to
statistical data obtained from experiments or from numerical simulations. Here we report the results of such
analysis * ' performed on the statistical data from experiment. "

Birnbaum-Saunders et al. @ data published by Bogdanoff and Kozin “ has been used in this
example, According to 2" the test specimens were 6061-T6 aluminum strips, 0.061 in. thick, 4.5 in. long,
and 0.5 in. wide. The specimens were cut parallel to the direction of rolling of the sheet stock. The
specimens were mounted in simply supported bearings and deflected at the center with a Teflon clamp in
reverse bending. The center was deflected 18 times per second and three stress amplitudes were used. These
amplitudes were: 21 ksi (144.79 MPa) -- for the first sample, 26 ksi (179.26 MPa) -- for the second, and 31
ksi (213.74 MPa) -- for the third. There were 101 specimens in the first sample, 102 specimens -- in the
second, and 101 specimens -- in the third. Specimens were tested to failure. Lifetimes in the unit of N=10’
cycles of loading were recorded. No data were recorded at longer levels of damage. 7

There were an adequate number of specimens to obtain a good estimation for mean value and
variance of lifetime. The plots of the cumulative (empirical) distribution function F(N) of the lifetime data
for three samples of specimen as a function of the lifetime in cycles N of loading are shown in Fig. 4. They
have an evident feature, that is a similarity of the empirical distribution function F(N) with the "devil

staircase" prefractal.

(5)  carried out the wavelet analysis of the process. A "Sombrero"

Using the waveLab package
wavelet was used because it provides a marginally better visualization of the flow of failures. The graph of
the local maxima for the continuous wavelet transfonﬁ of the failure flow realization for the first sample of
specimens is shown in Fig. 5. It shows that the successive forkings produce a multifractal temporal structure
on unit interval. Increasing the magnification of the wavelet transform microscope reveals progressively the
successive generations of branching.

Wavelet analysis of empirical statistical data on reliability by using the WaveLab software reveals

the multifractal nature of the flow of failures, provides probabilistic evidence for the existence of a multipli-
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Fig. 4 Empirical distribution functions F(N) of lifetime data

for the samples 1, 2 and 3 of specimens.

cative process hidden in the temporal ordering of failure sequence. This multiplicative process generates
probabilistic measure, supported by a Cantor set. The ratio between the time scales of successive generation
can take different values, which is another indication that a multifractal description is appropriate.

Since its implementation on a computer is not excessively time consuming and does not require
enormous storage, the wavelet transform provides an efficient tool for analyzing the statistical data on
reliability with multifractal structure. Its application to a variety of technical situations, such as
nonparametric estimation of reliability measures, looks very useful.

;

6. CONCLUSIONS

We introduce here a new field of the multifractal applications in the reliability engineering and risk
analysis. The multifractal theory is a good basis for describing the temporal complexity of failure sequence,
for analyzing the statistical data on reliability and safety. It provides a deeper understanding the nature of
the failure flow.

We have used multifractal approach to explore the temporal structure of the flow of failures. In the
proposed multifractal reliability theory the emphasis switches to letting the statistical data on reliability
"speak for themselves", rather than approximating the lifetime distribution by one of the parametric models.

Wavelet analysis of empirical statistical data on reliability reveals the multifractal nature of the

flow of failures. Using the wavelet transform to explore the temporal structure of the flow of failures is an
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Fig. 5 The continuous wavelet transform of the failure flow realization

for the first sample of specimens.

efficient tool for analyzing the statistical data on reliability. It provides probabilistic evidence for thg
existence of a multiplicative process hidden in the temporal complexity of failure sequence.

This is only a preliminary study: a more complete and detailed analysis should endeavor to extend
this approach to the range of multiply censored statistical data on reliability and to solve an invert problem,
that is recovery of the parameters of multiplicative process hidden in the flow of failures. Multifractals offer

a promising approach to these problems,
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