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Numerical J integral Method To Determine Two Dimensional Stress Intensity
Factors in Cracked Sheets
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Eung J. Lee (Department of Automotive and Mechanical Engineering)
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ABSTRACT : The traction singular quarter point boundary element having
1”_1/2 and r+1/2 behavior of the stress and the displacement near the crack tip
is known as an effective means to determine accurately two-dimensional stress
intensity factor in linear elastic fracture problems. However, it should be
pointed out that the use of small sized traction singular quarter point elements
near the crack tip, in particular, under coarse mesh arrangements would cause
serious deterioration of stress intensity factor. As an alternative to resolve such
difficulty, the ] integral method is investigated to find the possibility to reduce
errors in evaluating the stress intensity factor when used with small sized
traction singular quarter point elements near the crack tip. A Ji integral for
the central crack problem of finite width in plane stress is derived for the
practical numerical implementation based on the quadratic interpolation function

as well as Jq integrals for the single and the double edge crack problems.

Accurate and less mesh-sensitive numerical results are illustrated for the

coarse mesh arrangements with 9 boundary elements.
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1. Introduction

The accurate prediction of the stress intensity factor (SIF) in cracked sheets
has been the most common concern pertaining to linear elastic fracture
mechanics. Analytical or approximate techniques have been investigated to
determine stress intensity factors in cracked sheets. A few good solutions for
certain idealized crack problems are available in closed form. SIF’s can be
directly determined in terms of the applied stress level, the crack size and the
geometric factor from these analytical solutions. When used with such
analytical means, however, it is nearly impossible to handle the problems of
arbitrary shaped cracked bodies subjected to various loading conditions. An
alternative powerful approach may be to use numerical methods such as the
FEM (finite element method) or the BEM (boundary element method). Thus,
SIF’s can be directly extracted using the computed stress and the deformation
fields around the crack tip. In related to the former techniques, as demonstrated
by Henshell and Shawl4], and Barsouml[5], crack tip elements were devised to
incorporate the stress singularity of r_l/2 near the crack tip and were used to
evaluate SIF’s by the direct displacement regression method.

Continuing research efforts have been also made toward the use of BEM. It
is well-known that even under highly coarse element arrangements for variety
of crack problems, the BEM vyields more accurate SIF's. We cite three
important publications. First, Blandford et al.[6] presented an accurate BEM
technique using the traction singular quarter point element to model the
behavior of the stress and the displacement in the vicinity of the crack tip. The
SIF  was directly determined from the relationship among the nodal
displacements on the crack surface adjacent to the crack tip. For a certain
parametric ratio of the crack tip element length over half of the crack length

(L/a) ranging from 0.05 to 0.9, results showed good accuracy within a narrow
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range around 0.1 only when used with the traction singular quadratic element
for the double edge crack problem. Second, Martinez and Dominguez[7]
developed a more improved technique to calculate SIF's directly from the nodal

values of the tractions in the vicinity of the crack. The use of traction singular

-1/2 +1/2
and r

displacement near the crack tip, respectively, was proven relatively more

quarter point elements having r behavior of the stress and the

accurate than other direct methods of such as displacement regression methods.
Although such a special modeling technique may be valid only in a small
vicinity of a crack tip in its concept, their computed results revealed
satisfactory accuracy over the almost range of the parameter (L/a) except the
range less than 0.1 for the centercrack and the double edge crack problem. In
contrasting, it seems paradoxical that the use of small sized elements near the
crack tip within the range of the parameter less than 0.1 still remains
prohibited under coarse mesh arrangements. Unlike prior studies, Jia et al.[9]
employed, instead of traction singular quarter point elements, alternative special
shape functions to model the displacement and the tractions near the crack tip.
They reported that results under the same coarse mesh arrangements were less
accurate than those of Martinez and Dominguez.[7]

On the other hand, it is noted that SIF’'s can be calculated indirectly via path
independent integrals. The motivation for using such integrals may be due to
the fact that the direct evaluation of near tip field quantities can be avoided,
yvet the value of the integrals is related to the SIF at the crack tip. A
substantial formulation and analysis associated with this subject appears to
have been conducted by Eischen[8]. Finely meshed finite element scheme
employing crack tip modeling techniques [4,5] were used to compute the fields.
The problem of the single edge crack in a finite width strip of homogeneous
materials was investigated for the parameter of the crack size over the width
of the strip (a/W) ranging from 0.0 to 0.8. It was reported that as (a/W)
increases up to 0.8, results by the ] integral method were shown less accurate
than those by the direct displacement regression method.

The primary concern of this paper aims at illustrating the performance of the
path independent J integral method when combined with the BEM under coarse
mesh arrangements as an alternative to the finely meshed FEM. A boundary
element scheme using the traction singular quarter point element is employed

to obtain necessary accurate solutions along the boundary including the crack



surface. While the direct strategy to calculate the SIF by Martinez and
Dominguez [7] utilizes only the local data within the crack tip elements from
the BEM solutions, the current J integral method needs not only all the
boundary data but also additional quantities derived from them.

The standard J integral representation by Rice[2] is adopted for the
computation of the SIF in cracked sheets. A fundamental conservation law in
elasticity which proves essential for computing the ] integral is derived by
considering the gradient of the strain energy function. The origin of the
formulation related to the path independent integrals can be referred to the
works by Knowles and Sternberg[3]. Subsequently, a representative ] integral
for a center crack problem of finite width in plane stress is derived for the
numerical implementation using quadratic shape functions. ] integrals for the
single and the double edge crack problems are also derived and numerically
calculated for the comparison purpose with the analytical solutions available in
the literature.[10] Since approaches under coarse mesh arrangements may be
strongly dependent on the size effect of crack tip elements, as suggested by Jia

et. al.[9], it may be desirable to find the computed values of Ky which change

very little as the ratio (I/a) varies.

The potential application of the current method is not limited to previous
opening mode I, symmetric crack problems of isotropic materials with traction
free crack surface, and may include handling two-dimensional problems

subjected to crack surface loading.

2. Numerical Formulation of The Jy integral

IL—\T1, 112+

&
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Figure 1. Domain Q enclosed by a contour I' of an elastic body.
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Referring to Fig. 1, the well known J1 integral is given as

J, = $(Wn, —cynju;,)dl "
T

When the near tip behaviors of the stress and the displacement are available
in asymptotic form by Williams[1], they are substituted into the integrand of

(1) and are integrated in the counterclockwise direction from the angle -n to +
n for a circle of radius eenclosing the crack tip. Resulting Jjintegral subjected
to a limiting process &->0 can be evaluated in terms of the stress intensity
factor Ky and Kjy for the cracked sheets.
J - K’ +K,’
! E for plane stress (2)

For the mode I opening fracture mode, the similar operation can be made for
a contour enclosing the remote boundary of the cracked sheet. If this operation

can be numerically performed utilizing the boundary data obtained from
numerical analyses such as BEM or FEM, the stress intensity factor Kj can be

immediately calculated from it.
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Figure 2. Central crack problem.
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Figure 3. A 9-element mesh for a central crack problem.

A center crack problem in plane stress as considered by Blandford et al.[6] is
analyzed again to illustrate the usage of the path independent Ji integral. From
the symmetry of the problem, it is sufficient for only one-fourth of the sheet
to be discretized as shown in Fig 2. The problem of the double edge cracks
can be treated in the similar way.

The contour in the counter clockwise direction consists of four pieces named

with subscripts as shown in Fig 3. The corresponding J| integral is taken as

Jy=2 §[Wn1 = (01U +0,U, )N, = (O, + Gy )N, ]dr :
I+, +T, (3)

It is noted that on the contour including the crack surface I'g , where ny=0,
01270 and up 1=0, the integrand identically vanishes. The boundary conditions

and the geometric conditions to evaluate the J| integral along the contour are

summarized as

18
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n,=+l,n,=0,06,,=0,0,=0 onl
n,=0,n,=+1,06,,=06,,06,=0 onT,

n,=-1,n,=0,u,=0,6,=00nT;. 4)

Then, using the values of the unit normal vectors in (4), the J1 integral is

simply expressed as follows

J 1 1 1
?1 = ljzgczzgzzdr_iczzuz,ldr"'i(_gcngn _5622822 +Gllul,1 ]dr

I 1 I
= f!:aczzgzzdr - iGZZuz,ldr + i(EG”S“ —5022822 jdr. 5)

It is necessary for the above integration to be transformed into a suitable
form for the numerical computation of the Ji integral. To this end,

isoparametric quadratic shape functions are employed as

<I>1(n)=%n(n—1) L =1-1 ,¢3(n)=%n(n+1) for—1<n<+l.

It is recommended to use the same shape functions used in the numerical
analysis. The interpolated coordinates, displacements and tractions in boundary

elements are expressed as

X% = D! i = g ul L 6T = R e e
7

where i and (e) denote the node number and element number, respectively.

The Jacobian along the contour is defined by

2 2
J(n) = d_r — % + dX2
dn dn dn (8)
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The differentiation of the displacement with respect to the coordinate XJ 1S

given as

g© 2 dui? dn
i dn dx; 9)

Resulting J1 integral is given as

(e)k (e)k
—=—E 2 f( J ldn+o, Y fduz dn

element element _| dT]
on I on I',
lI-v e I
( ) z It(e)kt(E)den E z J.( J ldn
element _| element _|
on Iy on I

+1 . du(e),k
-v Yt “‘[d; dn (10)

element _| n
on I3

This final expression containing numerical integrations of polynomial terms of
was obtained and can be numerically evaluated using the Gaussian quadrature.
It is noted that the path independent J{ integrals for the problems of the
double edge crack as shown in Fig. 4 and the single edge crack as shown in

Fig. 5 in plane stress can be similarly obtained.



21

Ao

st A S 2

XA ctHoll o5 S

ap+
—
IH=12a=
21.6 inch
e >
a a
e dW=da=v __
7.2 inche
o, .

Figure 4. Double edge cracks.

ope
= //
2H=1da=+
2l.6inch
a
= W=2a=-
3.6 iche
= e—
X

Figure 5. Single edge

crack.
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3. Traction Singular Quarter Point Elements

Referring to Fig. 6, crack tip elements are constructed using a quarter point
element and a traction singular quarter point element. In the BEM formulation
isoparametric with respect to the coordinate and the displacement, a mid point
in both side of elements around the crack tip should be placed at a quarter of
the1 /Slement length on the straight boundary as shown in Fig.5. By doing so,
+
r

behavior of the displacement near the crack tip can be introduced.
However, since , in the BEM, displacements and tractions are represented
independently, traction shape functions possessing r_ /2behavior of the stress
near the crack tip can be obtained by dividing each quadratic shape functions

by (r/L)+l/2 as explained by Martinez and Dominguez.[7]

Non—singular Traction Singular
Zuarter Point Element GQuarter Point Element
L
—»
«— L — L
k-2 k-l  k  kH 421 k+3

® @ @ O

L/4 /4

Figure 6. Crack tip modelling.

For this purpose, if a mid point in the right hand side quarter point element
is placed at a quarter of the element length on the straight boundary, a

geometrical relation between the coordinate and the variable r holds as follows

F= 0,0+ 4, (e 7+, (e L=+ 1)’ -
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Where quadratic shape functions defined in (6) were used. Its Jacobian is
12)

given as

dr
J=—=—(Mn+1
2(n )

dn

The denominator to construct a traction singular quarter point element is

established as
r 1
—=—(M+1
\[ ;D (13)
By dividing the quadratic shape functions (6) with this, we have
_ =nfor-1<n<+1.
n), ¢; (M) =n n 14

D 5 m=20-

¢, =" ;

(m+
ie., >0, $1 m)

approaches -1
- 1/2)

It is obvious that if the coordinate

singular with the order of the magnitude O(r
(15)

Corresponding tractions are described as
(e) _ y k,
" = Z(I)k (Mt ©
As n approaches -1, 0, +1, respectively, the singular traction at the crack tip

in the x9 direction becomes
) L K
5@ =lim,[= 3 - ——
r—>0 r 21“-

' — lim
>+
9 =2t asn =0,

23
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' =t as n — +1. (16)
Thus, the stress intensity factor for the traction singular quarter point

element can be directly obtained as
K, =+/2nLt}® 17)

This method has been first devised by Martinez and Dominguez.[7] As
indicated by them, this direct method makes use of the nodal value of the
traction at the tip, allowing unbounded behavior of the stress near the crack
tip. Additionally, it is noted that while the Lh.s limiting value at the crack tip
vanishes due to the traction free boundary condition, the r.h.s limiting value is

unbounded with the order of the magnitude O(r_l/z). Thus, it should be

necessary to model the crack tip using the double nodes which makes enable
to allow the continuity of the displacements and the discontinutity of tractions

at the crack tip as shown in Fig.6.
4. Numerical Examples and Discussion

Three problems having individually different ratios of H/W and a/W were
investigated using the approach described in this paper. The first two problems
were taken from those by Blandford et al. [6] (H/W=3.0 and a/W=0.5 with
a=1.8 in). The same problems were also investigated by Martinez and
Dominguez.[7], and Jia et all9]. The third problem was taken from that by
Eischen[8] where the parameters are given as H=2.0 in, W=1.0 in, and
a=(0.0,0.2,0.3,0.4,0.5,0.6,0.7,0.8) in. Unlike previous studies, the parameters used in
this study are taken with H/W=2.0, a/W=05, 0.7, 0.8 for the center crack and
the single edge crack problem and H/W=2.0, a/W=0.5, 0.8 for the double edge
crack problem. The dimensions of each model under consideration for numerical

computations are given as the width W and the height H as shown in Fig. 2,
Fig. 4 and Fig. 5, respectively. The traction op at the remote boundary is

taken wunity. The material properties are taken with Young’s modulus
E=10,000ksi and Poission ratio =0.3.

Discretized boundary elements for a sheet with a center crack are illustrated
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in Fig. 3, where L is the length of each of the two adjacent elements including
the crack tip. The sizes of elements adjoining with the corner in the lh.s and
the r.h.s of the rectangular sheets are taken with H/10 which is different from
H/6 in prior studies [6,79]. For the problems of a/W=0.5, the boundary is
discretized in a symmetric pattern with respect to the crack tip. For a/W=0.7 or
0.8, the quarter point element on the traction free crack surface against the
traction singular quarter point element is configured to have the same length of
element, i.e, L. The remaining part adjacent to the crack tip elements is filled
with a single ordinary mid point quadratic element. Computed SIF's are plotted
in terms of relative errors defined as A%= {Kj (BEM)- Kjy (analyt)}/ Kj
(analyt.) in per cent. Finally, as suggested by Jia et. al.[9], it may be desirable
for the computed values of Ky to change very little as the ratio (L/a) varies.
To this end, all the numerical tests using 9 elements arrangement were
conducted to examine the sensitivity of Kl for the range 0.05< (L/a) =0.9.
Relative comparisons are made between the two methods of the indirect ]
integral method and the direct one. Although both methods share the same
BEM solution to compute the SIF, the results may be inherently different each
other.
A%

Jinta/W=0.5
TSQE.,a/W=0.5
J iw/\NZOJ
TSQEAW-07

Jint.a/W=0.8

TSQE.a/W=0.8
4 LI5gge 08

Figure 7. Center crack.
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Center Crack

The lengths of center crack shown in Fig. 2 are taken with a=0.5, 0.7 and
0.8 in, respectively. For a/W=0.5, 0.7 and 0.8, the mode I SIF'’s, referring to the
Handbook by Tadall0], are given as Ky=1.4873, 2.2069 and 2.8790, respectively.
The ] integral method for a/W=0.5 in Fig. 5 presents quiteaccurate results
within 0.5% of the exact value for the range 0.05< (L/a) <09 and is less
mesh-sensitive than those of the direct method using the traction singular
quarter point element. It is noted that although the pattern of Kj for a/W=05
when used with the traction singular quarter point element is not similar to
that by Martinez and Dominguez.[7], the range of the error is bounded with
sufficient accuracy. For (a/W)=0.7, both methods also show overall good
accuracy within 2.5% of the exact value for the range 0.2< (L/a) <0.7. Both
results for (a/W)=0.8, however, deviate at least 5.0% off from the exact value
given by Tada.[10] The range in-sensitive to (L/a) for the direct method tends
to be narrowed compared with the indirect one as (a/W) increases. For small
(L/a), both methods show commonly degraded. To avoid such deterioration of
Ky, Jia et al used an extra mid point quadratic element at each side of the
crack tip element to make an 1ll-elemet mesh for (a/W)=0.5, obtaining errors
under 1.5% for the center crack problem. In contrast, as can be seen in Fig. 7,
the current J integral method for (a/W)=0.5 provides more excellent accuracy of
error under 0.5 % without addition of extra elements. Results for (a/W)=0.7 and
0.8, show considerably improved accuracy compared with the direct method for
small (L/a). Using the J integral method, it is obviously seen that the

deterioration of Ky as (L/a) approaches 0.9 disappears.
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Figure 8. Double edge cracks.

Double Edge Crack

A double edge crack problem of its width, 2W=2.0 in and height 2H=4.0 in as
shown in Fig. 4 is examined to calculate the stress intensity factor Kj. The
lengths of crack are given with a=0.5 and 0.8 in, respectively. For a/W=0.5 and
a/W=0.8, the mode I stress intensity factors are given as Ky=1.4690 and
Ky=2.4044, respectively. It is noted that although the pattern of Kj for a/W=0.5
when used with the traction singular quarter point element is not similar to
that by Martinez and Dominguez.[7], the range of the error is bounded with
sufficient accuracy. The ] integral method as in Fig. 8 for a/W=0.5 and
a/W=0.8 shows quite accurate results within 1.1% and 2.1% over all the range
of the parameter (L/a) between 0.05 and 0.9, respectively. Jia et al’s attempt
using 1l-element scheme to avoid the degradation of Kj for small (L/a) =0.2
vields the errors under 1%. The current ] integral approach also provides

similar accuracy of error under 1 % without addition of extra elements. It is



28

obvious that the J integral method shows considerably improved accuracy for a

small (L/a) ratio. In particular, since the direct method yields increasingly
inaccurate for (L/a)=0.1, it may be difficult to find the value of Ky to change

very little as (L/a) varies.

A%

Jinta/W=0.5

TSS IE,a/WIO.S
8=
Jinta/W=0.7_

Jint,a/W=0.8
— e

TSQE.a/W=0.8
+~ ”Ea

Figure 9. Single edge crack.

Single Edge Crack

The SIF Kj is calculated for the single edge crack problem of its width,
W=1 in and height 2H=4 in as shown in Fig. 3. The lengths of crack are taken
with a=0.5, 0.7 and 0.8 in, respectively. For a/W=0.5, 0.7 and 0.8, the mode I
SIF'’s are given as Ky=3.55, 9.42 and 18.94, respectively.

The ] integral method as in Fig. 9 for a/W=05 revealed relatively more
accurate and flatter results around 1.0% over the range 0.3= (L/a) =0.6 than
those of the traction singular quarterpoint element. For a/W=0.7, both methods
show errors within 3.0% for the range 0.2=(L/a)=0.7. For a/W=0.8, while the J
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integral method yields 3% error over the range 0.3= (L/a) =09, the direct
method shows 3% error over the range 0.2= (L/a) =0.6. Both methods show
that as (L/a) varies the sensitivity of Ky vanishes on certain interval of (L/a).
In particular, the ] integral method yields flatter curve over the wide band of
(L/a), and appears to be less influenced due to the size effect of the crack tip

elements than the direct one.
5. Concluding Remarks

The integral form suitable to computing two-dimensional stress intensity
factors in the linear elastic fracture mechanics has been derived from a
conservation law of the elasticity, leading to the standard ] integral. Problem
dependent numerical formulations to calculate the Jj integral have been made
using the BEM solutions by employing quadratic shape functions. It was
known that on the contour including the crack surface 0, the integrand of the

J1 integral identically vanishes regardless of the mesh arrangement around the

crack tip. The strain term €11 appearing on the contour I'3 generated from the
symmetry axis of the given problem is considered as an internal quantity
which cannot be directly obtained from the BEM solution. In subsequent
numerical derivation utilizing linear elastic Hooke’s law under the plane stress
to condition, it was shown that it can be expressed in terms of the boundary
traction tl() and the derivative of the boundary displacement uz() with respect
to x7.

The ] integral method combined with the traction singular quarter point
element for the three crack problems was examined for comparisons with the
direct method using the traction singular quarter point element. It turned out
that the indirect J integral method produced uniformly accurate results over the
wide band of the parameter (L/a) compared with the direct one based on the
traction singular quarter point element. While the direct method showed serious
deterioration of Ky for the extreme values of (L/a)<0.1, the ] integral method
vielded considerably improved results. Finally, it is concluded that though under
coarse mesh arrangements the J integral method shows relatively little
dependence on the size effect of the crack tip elements than the direct one, the

sensitivity analysis should necessarily be conducted for the accurate
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determination of stress intensity factors.
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