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Numerical J integral Method To Determine Two Dimensional Stress Intensity 
Factors in Cracked Sheets

이 응 재  (자동차기계전공)

Eung J. Lee (Department of Automotive and Mechanical Engineering)

Key Words : crack, stress intensity factor, traction singular quarter point element, J 

integral

ABSTRACT : The traction singular quarter point boundary element having 

r
-1/2

 and r
+1/2

 behavior of the stress and the displacement near the crack tip 

is known as an effective means to determine accurately two-dimensional stress 

intensity factor in linear elastic fracture problems. However, it should be 

pointed out that the use of small sized traction singular quarter point elements 

near the crack tip, in particular, under coarse mesh arrangements would cause 

serious deterioration of stress intensity factor. As an alternative to resolve such 

difficulty, the J integral method is investigated to find the possibility to reduce 

errors in evaluating the stress intensity factor when used with small sized 

traction singular quarter point elements near the crack tip. A J1 integral for 

the central crack problem of finite width in plane stress is derived for the 

practical numerical implementation based on the quadratic interpolation function 

as well as J1 integrals for the single and the double edge crack problems. 

Accurate and less mesh-sensitive numerical results are illustrated for the 

coarse mesh arrangements with 9 boundary elements.

요약 : 응력확대계수는 J적분에 의해서도 계산할 수 있음이 잘 알려져 있다. 이 방

법의 장점은 이론적 정식화에서 알 수 있듯이 균열 선단을 포함하는 영역의 정보

가 배제됨에도 불구하고 응력확대계수를 간접적으로 계산할 수 있다는 점이다. 따

라서 균열 선단 주위의 모델링 상세 여부에 영향을 덜 받을 수도 있다는 관점에서 

연구의 관심을 끈다. 본 연구에서는 균열특이요소를 채용한 경계요소법을 기반으로 

균열특이요소에서 직접적으로 얻어지는 응력확대계수를 계산하고 아울러 비교를 

위해서 J 적분법에 의해 간접적으로 응력확대계수를 계산 비교하였다. 특이균열요

소의 길이(L) 대비 균열 크기의 반(a) 즉 (L/a)를 파라메터로 하여 0.05에서 0.9까
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지의 수치 연구를 수행하였다. 연구 결과  균열 크기에 비해 대단히 작은 균열특이

요소를 사용한 직접적인 계산법에서 큰 오차를 보여주는 (L/a)≦0.1인 영역에서도 

J 적분법이 상대적으로 괄목할만한 적은 오차를 보여주었다. 0.1≦(L/a)≦0.9 영역

에서도 J 적분법은 바람직스러운 정밀도와 더불어 파라메터 (L/a)의 값에 별 영향 

없이 균일한 오차를 보여주었다. 

1. Introduction

  The accurate prediction of the stress intensity factor (SIF) in cracked sheets 

has been the most common concern pertaining to linear elastic fracture 

mechanics. Analytical or approximate techniques have been investigated to 

determine stress intensity factors in cracked sheets. A few good solutions for 

certain idealized crack problems are available in closed form. SIF's can be 

directly determined in terms of the applied stress level, the crack size and the 

geometric factor from these analytical solutions. When used with such 

analytical means, however, it is nearly impossible to handle the problems of 

arbitrary shaped cracked bodies subjected to various loading conditions. An 

alternative powerful approach may be to use numerical methods such as the 

FEM (finite element method) or the BEM (boundary element method). Thus, 

SIF's can be directly extracted using the computed stress and the deformation 

fields around the crack tip. In related to the former techniques, as demonstrated 

by Henshell and Shaw[4], and Barsoum[5], crack tip elements were devised to 

incorporate the stress singularity of r
-1/2

 near the crack tip and were used to 

evaluate SIF's by the direct displacement regression method. 

  Continuing research efforts have been also made toward the use of BEM. It 

is well-known that even under highly coarse element arrangements for variety 

of crack problems, the BEM yields more accurate SIF's. We cite three 

important publications. First, Blandford et al.[6] presented an accurate BEM 

technique using the traction singular quarter point element to model the 

behavior of the stress and the displacement in the vicinity of the crack tip. The 

SIF was directly determined from the relationship among the nodal 

displacements on the crack surface adjacent to the crack tip. For a certain 

parametric ratio of the crack tip element length over half of the crack length 

(L/a) ranging from 0.05 to 0.9, results showed good accuracy within a narrow 
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range around 0.1 only when used with the traction singular quadratic element 

for the double edge crack problem. Second, Martinez and Dominguez[7] 

developed a more improved technique to calculate SIF's directly from the nodal 

values of the tractions in the vicinity of the crack. The use of traction singular 

quarter point elements having r
-1/2

 and r
+1/2

 behavior of the stress and the 

displacement near the crack tip, respectively, was proven relatively more 

accurate than other direct methods of such as displacement regression methods. 

Although such a special modeling technique may be valid only in a small 

vicinity of a crack tip in its concept, their computed results revealed 

satisfactory accuracy over the almost range of the parameter (L/a) except the 

range less than 0.1 for the centercrack and the double edge crack problem. In 

contrasting, it seems paradoxical that the use of small sized elements near the 

crack tip within the range of the parameter less than 0.1 still remains 

prohibited under coarse mesh arrangements. Unlike prior studies, Jia et al.[9] 

employed, instead of traction singular quarter point elements, alternative special 

shape functions to model the displacement and the tractions near the crack tip. 

They reported that results under the same coarse mesh arrangements were less 

accurate than those of Martinez and Dominguez.[7] 

  On the other hand, it is noted that SIF's can be calculated indirectly via path 

independent integrals. The motivation for using such integrals may be due to 

the fact that the direct evaluation of near tip field quantities can be avoided, 

yet the value of the integrals is related to the SIF at the crack tip. A 

substantial formulation and analysis associated with this subject appears to 

have been conducted by Eischen[8]. Finely meshed finite element scheme 

employing crack tip modeling techniques [4,5] were used to compute the fields. 

The problem of the single edge crack in a finite width strip of homogeneous 

materials was investigated for the parameter of the crack size over the width 

of the strip (a/W) ranging from 0.0 to 0.8. It was reported that as (a/W) 

increases up to 0.8, results by the J integral method were shown less accurate 

than those by the direct displacement regression method.

  The primary concern of this paper aims at illustrating the performance of the 

path independent J integral method when combined with the BEM under coarse 

mesh arrangements as an alternative to the finely meshed FEM. A boundary 

element scheme using the traction singular quarter point element is employed 

to obtain necessary accurate solutions along the boundary including the crack 
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surface. While the direct strategy to calculate the SIF by Martinez and 

Dominguez [7] utilizes only the local data within the crack tip elements from 

the BEM solutions, the current J integral method needs not only all the 

boundary data but also additional quantities derived from them.

  The standard J integral representation by Rice[2] is adopted for the 

computation of the SIF in cracked sheets. A fundamental conservation law in 

elasticity which proves essential for computing the J integral is derived by 

considering the gradient of the strain energy function. The origin of the 

formulation related to the path independent integrals can be referred to the 

works by Knowles and Sternberg[3]. Subsequently, a representative J integral 

for a center crack problem of finite width in plane stress is derived for the 

numerical implementation using quadratic shape functions. J integrals for the 

single and the double edge crack problems are also derived and numerically 

calculated for the comparison purpose with the analytical solutions available in 

the literature.[10] Since approaches under coarse mesh arrangements may be 

strongly dependent on the size effect of crack tip elements, as suggested by Jia 

et. al.[9], it may be desirable to find the computed values of KI which change 

very little as the ratio (L/a) varies.

  The potential application of the current method is not limited to previous 

opening mode I, symmetric crack problems of isotropic materials with traction 

free crack surface, and  may include handling two-dimensional problems 

subjected to crack surface loading.

2. Numerical Formulation of The J1 integral

Figure 1. Domain Ω enclosed by a contour Γ of an elastic body.
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  Referring to Fig. 1, the well known J1 integral is given as

ò
G

Gs-= d)unWn(J 1,ijij11
               (1)

  When the near tip behaviors of the stress and the displacement are available 

in asymptotic form by Williams[1], they are substituted into the integrand of 

(1) and are integrated in the counterclockwise direction from the angle -π to +

π for a circle of radius εenclosing the crack tip. Resulting J1integral subjected 

to a limiting process ε->0 can be evaluated in terms of the stress intensity 

factor KI and KII  for the cracked sheets. 
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for plane stress            (2)

  For the mode I opening fracture mode, the similar operation can be made for 

a contour enclosing the remote boundary of the cracked sheet. If this operation 

can be numerically performed utilizing the boundary data obtained from 

numerical analyses such as BEM or FEM, the stress intensity factor KI can be 

immediately calculated from it. 

Figure 2. Central crack problem.
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Figure 3. A 9-element mesh for a central crack problem.

  A center crack problem in plane stress as considered by Blandford et al.[6] is 

analyzed again to illustrate the usage of the path independent J1 integral. From 

the symmetry of the problem, it is sufficient for only one-fourth of the sheet 

to be discretized as shown in Fig 2. The problem of the double edge cracks 

can be treated in the similar way.

  The contour  in the counter clockwise direction consists of four pieces named 

with subscripts as shown in Fig 3. The corresponding J1 integral is taken as

[ ] .dn)uu(n)uu(Wn2J
321

21,2221,11211,2211,11111 ò
G+G+G

Gs+s-s+s-=
    (3)

  It is noted that on the contour including the crack surface Γ0 , where n1=0, 

σ12=0 and u2,1=0, the integrand identically vanishes. The boundary conditions 

and the geometric conditions to evaluate the J1 integral along the contour are 

summarized as
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  Then, using the values of the unit normal vectors in (4), the J1 integral is 

simply expressed as follows
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  It is necessary for the above integration to be transformed into a suitable 

form for the numerical computation of the J1 integral. To this end, 

isoparametric quadratic shape functions are employed as

.11for)1(
2
1)(,1)(,)1(

2
1)( 3

2
21 +£h£-+hh=hfh-=hf-hh=hf

(6)

  It is recommended to use the same shape functions used in the numerical 

analysis. The interpolated coordinates, displacements and tractions in boundary 

elements are expressed as
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  where i and (e) denote the node number and element number, respectively.

The Jacobian along the contour is defined by
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  The differentiation of the displacement with respect to the coordinate xj is 

given as

j

)e(
i)e(

j,i dx
d

d
ud
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  Resulting J1 integral is given as
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  This final expression containing numerical integrations of polynomial terms of  

was obtained and can be numerically evaluated using the Gaussian quadrature. 

It is noted that the path independent J1 integrals for the problems of the 

double edge crack as shown in Fig. 4 and the single edge crack as shown in 

Fig. 5 in plane stress can be similarly obtained.
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Figure 4. Double edge cracks.

Figure 5. Single edge crack.
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3. Traction Singular Quarter Point Elements

  Referring to Fig. 6, crack tip elements are constructed using a quarter point 

element and a traction singular quarter point element. In the BEM formulation 

isoparametric with respect to the coordinate and the displacement, a mid point 

in both side of elements around the crack tip should be placed at a quarter of 

the element length on the straight boundary as shown in Fig.5. By doing so, 

r
+1/2

 behavior of the displacement near the crack tip can be introduced. 

However, since , in the BEM, displacements and tractions are represented 

independently, traction shape functions possessing r
-1/2

behavior of the stress 

near the crack tip can be obtained by dividing each quadratic shape functions 

by (r/L)
+1/2

 as explained by Martinez and Dominguez.[7]

         

Figure 6. Crack tip modelling.

  For this purpose, if a mid point in the right hand side quarter point element 

is placed at a quarter of the element length on the straight boundary, a 

geometrical relation between the coordinate  and the variable r holds as follows

2
321 )1(

4
LL)(

4
L)(0)(r +h=·hf+·hf+·hf=

          (11)
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  Where quadratic shape functions defined in (6) were used. Its Jacobian is 

given as

)1(
2
L

d
drJ +h=
h

=
                         (12)

  The denominator to construct a traction singular quarter point element is 

established as

)1(
2
1

L
r

+h=
                          (13)

  By dividing the quadratic shape functions (6) with this, we have
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  It is obvious that if the coordinate  approaches -1, i.e., r->0, )(1 hf  is 

singular with the order of the magnitude O(r
-1/2

).

Corresponding tractions are described as
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  As η approaches -1, 0, +1, respectively, the singular traction at the crack tip 

in the x2 direction becomes
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  Thus, the stress intensity factor for the traction singular quarter point 

element can be directly obtained as

)e(,1
2I tL2K p=                     (17)

  This method has been first devised by Martinez and Dominguez.[7] As 

indicated by them, this direct method makes use of the nodal value of the 

traction at the tip, allowing unbounded behavior of the stress near the crack 

tip. Additionally, it is noted that while the l.h.s limiting value at the crack tip 

vanishes due to the traction free boundary condition, the r.h.s limiting value is 

unbounded with the order of the magnitude O(r
-1/2

). Thus, it should be 

necessary to model the crack tip using the double nodes which makes enable 

to allow the continuity of the displacements and the discontinutity of tractions 

at the crack tip as shown in Fig.6.

4. Numerical Examples and Discussion

  Three problems having individually different ratios of H/W and a/W were 

investigated using the approach described in this paper. The first two problems 

were taken from those by Blandford et al. [6] (H/W=3.0 and a/W=0.5 with 

a=1.8 in). The same problems were also investigated by Martinez and 

Dominguez.[7], and Jia et al[9]. The third problem was taken from that by 

Eischen[8] where the parameters are given as H=2.0 in, W=1.0 in, and 

a=(0.0,0.2,0.3,0.4,0.5,0.6,0.7,0.8) in. Unlike previous studies, the parameters used in 

this study are taken with H/W=2.0, a/W=0.5, 0.7, 0.8 for the center crack and 

the single edge crack problem and H/W=2.0, a/W=0.5, 0.8 for the double edge 

crack problem. The dimensions of each model under consideration for numerical 

computations are given as the width W and the height H as shown in Fig. 2, 

Fig. 4 and Fig. 5, respectively. The traction σ0 at the remote boundary is 

taken unity. The material properties are taken with Young's modulus 

E=10,000ksi and Poission ratio =0.3.

  Discretized boundary elements for a sheet with a center crack are illustrated 
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in Fig. 3, where L is the length of each of the two adjacent elements including 

the crack tip. The sizes of elements adjoining with the corner in the l.h.s and 

the r.h.s of the rectangular sheets are taken with H/10 which is different from 

H/6 in prior studies [6,7,9]. For the problems of a/W=0.5, the boundary is 

discretized in a symmetric pattern with respect to the crack tip. For a/W=0.7 or 

0.8, the quarter point element on the traction free crack surface against the 

traction singular quarter point element is configured to have the same length of 

element, i.e., L. The remaining part adjacent to the crack tip elements is filled 

with a single ordinary mid point quadratic element. Computed SIF's are plotted 

in terms of relative errors defined as Δ%= {KI (BEM)- KI (analyt.)}/ KI 

(analyt.) in per cent. Finally, as suggested by Jia et. al.[9], it may be desirable 

for the computed values of KI to change very little as the ratio (L/a) varies. 

To this end, all the numerical tests using 9 elements arrangement were 

conducted to examine the sensitivity of KII for the range 0.05≦ (L/a) ≦0.9. 

Relative comparisons are made between the two methods of the indirect J 

integral method and the direct one. Although both methods share the same 

BEM solution to compute the SIF, the results may be inherently different each 

other.

Δ% Center Crack
J in t ,a/W=0 .5

T SQE,a/W =0 .5

J in t ,a/W=0 .7

T SQE,a/W =0 .7

J in t ,a/W=0 .8

T SQE,a/W =0 .8
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Figure 7. Center crack.
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Center Crack

  The lengths of center crack shown in Fig. 2 are taken with a=0.5, 0.7 and 

0.8 in, respectively. For a/W=0.5, 0.7 and 0.8, the mode I SIF's, referring to the 

Handbook by Tada[10], are given as KI=1.4873, 2.2069 and 2.8790, respectively. 

The J integral method for a/W=0.5 in Fig. 5 presents quiteaccurate results 

within 0.5% of the exact value for the range 0.05≦ (L/a) ≦0.9 and is less 

mesh-sensitive than those of the direct method using the traction singular 

quarter point element. It is noted that although the pattern of KI for a/W=0.5 

when used with the traction singular quarter point element is not similar to 

that by Martinez and Dominguez.[7], the range of the error is bounded with 

sufficient accuracy. For (a/W)=0.7, both methods also show overall good 

accuracy within 2.5% of the exact value for the range 0.2≦ (L/a) ≦0.7. Both 

results for (a/W)=0.8, however, deviate at least 5.0% off from the exact value 

given by Tada.[10] The range in-sensitive to (L/a) for the direct method tends 

to be narrowed compared with the indirect one as (a/W) increases. For small 

(L/a), both methods show commonly degraded. To avoid such deterioration of 

KI, Jia et al used an extra mid point quadratic element at each side of the 

crack tip element to make an 11-elemet mesh for (a/W)=0.5, obtaining errors 

under 1.5% for the center crack problem. In contrast, as can be seen in Fig. 7, 

the current J integral method for (a/W)=0.5 provides more excellent accuracy of 

error under 0.5 % without addition of extra elements. Results for (a/W)=0.7 and 

0.8, show considerably improved accuracy compared with the direct method for 

small (L/a). Using the J integral method, it is obviously seen that the 

deterioration of KI as (L/a) approaches 0.9 disappears. 
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Δ% Double Edge Crack
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Figure 8. Double edge cracks.

Double Edge Crack

  A double edge crack problem of its width, 2W=2.0 in and height 2H=4.0 in as 

shown in Fig. 4 is examined to calculate the stress intensity factor KI. The 

lengths of crack are given with a=0.5 and 0.8 in, respectively. For a/W=0.5 and 

a/W=0.8, the mode I stress intensity factors are given as KI=1.4690 and 

KI=2.4044, respectively. It is noted that although the pattern of KI for a/W=0.5 

when used with the traction singular quarter point element is not similar to 

that by Martinez and Dominguez.[7], the range of the error is bounded with 

sufficient accuracy. The J integral method as in Fig. 8 for a/W=0.5 and 

a/W=0.8 shows quite accurate results within 1.1% and 2.1% over all the range 

of the parameter (L/a) between 0.05 and 0.9, respectively. Jia et al's attempt 

using 11-element scheme to avoid the degradation of KI for small (L/a) =0.2 

yields the errors under 1%. The current J integral approach also provides 

similar accuracy of error under 1 % without addition of extra elements. It is 
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obvious that the J integral method shows considerably improved accuracy for a 

small (L/a) ratio. In particular, since the direct method yields increasingly 

inaccurate for (L/a)=0.1, it may be difficult to find the value of KI to change 

very little as (L/a) varies.

Δ% Single Edge Crack
J in t ,a/W=0 .5

T SQE,a/W =0 .5
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Figure 9. Single edge crack.

Single Edge Crack

  The SIF KI is calculated for the single edge crack problem of its width, 

W=1 in and height 2H=4 in as shown in Fig. 3. The lengths of crack are taken 

with a=0.5, 0.7 and 0.8 in, respectively. For a/W=0.5, 0.7 and 0.8, the mode I 

SIF's are given as KI=3.55, 9.42 and 18.94, respectively.

The J integral method as in Fig. 9 for a/W=0.5 revealed relatively more 

accurate and flatter results around 1.0% over the range 0.3= (L/a) =0.6 than 

those of the traction singular quarterpoint element. For a/W=0.7, both methods 

show errors within 3.0% for the range 0.2=(L/a)=0.7. For a/W=0.8, while the J 
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integral method yields 3% error over the range 0.3= (L/a) =0.9, the direct 

method shows 3% error over the range 0.2= (L/a) =0.6. Both methods show 

that as (L/a) varies the sensitivity of KI vanishes on certain interval of (L/a). 

In particular, the J integral method yields flatter curve over the wide band of 

(L/a), and appears to be less influenced due to the size effect of the crack tip 

elements than the direct one.

5. Concluding Remarks

  The integral form suitable to computing two-dimensional stress intensity 

factors in the linear elastic fracture mechanics has been derived from a 

conservation law of the elasticity, leading to the standard J integral. Problem 

dependent numerical formulations to calculate the J1 integral have been made 

using the BEM solutions by employing quadratic shape functions. It was 

known that on the contour including the crack surface 0, the integrand of the 

J1 integral identically vanishes regardless of the mesh arrangement around the 

crack tip. The strain term ε11 appearing on the contour Γ3 generated from the 

symmetry axis of the given problem is considered as an internal quantity 

which cannot be directly obtained from the BEM solution. In subsequent 

numerical derivation utilizing linear elastic Hooke's law under the plane stress 

to condition, it was shown that it can be expressed in terms of the boundary 

traction t1() and the derivative of the boundary displacement u2() with respect 

to x2.

  The J integral method combined with the traction singular quarter point 

element for the three crack problems was examined for comparisons with the 

direct method using the traction singular quarter point element. It turned out 

that the indirect J integral method produced uniformly accurate results over the 

wide band of the parameter (L/a) compared with the direct one based on the 

traction singular quarter point element. While the direct method showed serious 

deterioration of KI for the extreme values of (L/a)<0.1, the J integral method 

yielded considerably improved results. Finally, it is concluded that though under 

coarse mesh arrangements the J integral method shows relatively little 

dependence on the size effect of the crack tip elements than the direct one, the 

sensitivity analysis should necessarily be conducted for the accurate 
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determination of stress intensity factors.
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